Neural Network Quine
نویسندگان
چکیده
Self-replication is a key aspect of biological life that has been largely overlooked in Artificial Intelligence systems. Here we describe how to build and train self-replicating neural networks. The network replicates itself by learning to output its own weights. The network is designed using a loss function that can be optimized with either gradient-based or nongradient-based methods. We also describe a method we call regeneration to train the network without explicit optimization, by injecting the network with predictions of its own parameters. The best solution for a self-replicating network was found by alternating between regeneration and optimization steps. Finally, we describe a design for a self-replicating neural network that can solve an auxiliary task such as MNIST image classification. We observe that there is a trade-off between the network’s ability to classify images and its ability to replicate, but training is biased towards increasing its specialization at image classification at the expense of replication. This is analogous to the trade-off between reproduction and other tasks observed in nature. We suggest that a selfreplication mechanism for artificial intelligence is useful because it introduces the possibility of continual improvement through natural selection.
منابع مشابه
Causation and Conditionals in the Cognitive Science of Human Reasoning
This article traces the philosophical and psychological connections between causation and the conditional, if...then, across the two main paradigms used in conditional reasoning, the selection task and the conditional inference paradigm. It is argued that hypothesis testing in the selection task reflects the philosophical problems identified by Quine and Goodman for the material conditional int...
متن کاملThe Predictability Power of Neural Network and Genetic Algorithm from Fiems’ Financial crisis
Organizations expose to financial risk that can lead to bankruptcy and loss of business is increased nowadays. This may leads to discontinuity in operations, increased legal fees, administrative costs and other indirect costs. Accordingly, the purpose of this study was to predict the financial crisis of Tehran Stock Exchange using neural network and genetic algorithm. This research is descripti...
متن کاملDetecting Causal Chains in Small-N Data
The first part of this paper shows that Qualitative Comparative Analysis (QCA)—also in its most recent form as presented in Ragin (2008)—, does not correctly analyze data generated by causal chains. The incorrect modeling of data originating from chains essentially stems from QCA’s reliance on Quine-McCluskey optimization to eliminate redundancies from sufficient and necessary conditions. Baumg...
متن کاملCrack Detection of Timoshenko Beams Using Vibration Behavior and Neural Network
Abstract: In this research, at first, the natural frequencies of a cracked beam are obtained analytically, then, location and depth of a crack in beam is identified by neural network method. The research is applied on a beam with an open crack for three different boundary conditions. For this purpose, at first, the natural frequencies of the cracked beam are obtained analytically, to get the ex...
متن کاملA Neural Network Model to Solve DEA Problems
The paper deals with Data Envelopment Analysis (DEA) and Artificial Neural Network (ANN). We believe that solving for the DEA efficiency measure, simultaneously with neural network model, provides a promising rich approach to optimal solution. In this paper, a new neural network model is used to estimate the inefficiency of DMUs in large datasets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018